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Abstract—Modern programming languages, such as Java, use
exception-handling mechanisms to guarantee the robustness of
software systems. Although important, the quality of exception
code is usually poor and neglected by developers. Indiscriminate
robustness changes (e.g., the addition of empty catch blocks)
can indicate design decisions that negatively impact the internal
quality of software systems. As it is known in the literature,
multiple occurrences of poor code structures, namely code smells,
are strong indicators of design problems. Still, existing studies
focus mainly on the correlation of maintainability smells with
design problems. However, using only these smells may not
be enough since developers need more context (e.g., system
domain) to identify the problems in certain scenarios. Moreover,
these studies do not explore how changes in the exceptional
code of the methods combined with maintainability smells can
give complementary evidence of design problems. By covering
both regular and exception codes, the developer can have more
context about the system and find complementary code smells
that reinforce the presence of design problems. This work aims
to leverage the identification of design problems by tracking
poor robustness changes combined with maintainability smells.
We investigated the correlation between robustness changes and
maintainability smells on the commit history of more than
160k methods from different releases of 10 open-source software
systems. We observed that maintainability smells can be worsened
or even introduced when robustness changes are performed.
This scenario mainly happened for the smells Feature Envy,
Long Method, and Dispersed Coupling. We also analyzed the
co-occurrence between robustness and maintainability smells.
We identified that the empty catch block and catch throwable
robustness smells were the ones that co-occurred the most with
maintainability smells related to the Concern Overload and
Misplaced Concern design problems. The contribution of our
work is to reveal that poor exception code, usually neglected
by developers, negatively impacts the quality of methods and
classes, signaled by the maintainability smells. Therefore, existing
code smell detecting tools can be enhanced to leverage robustness
changes to identify design problems.

Index Terms—empirical study, design problems, robustness,
exception handling, code smells

I. INTRODUCTION

Exception-handling mechanisms, commonly utilized in
modern programming languages, promote the robustness and
stability of the software systems [1], [2]. The proper use of
these mechanisms aims to guarantee the software integrity
when unexpected events or behaviors happen [3]. However,
most software systems do not offer detailed documentation

of the design decisions related to the exception handling
implementation [4], [5]. This lack of information encourages
developers to focus solely on the normal behavior of the
software system [6], leaving the exception handling behavior
poorly implemented [1], [7] or even neglecting the exceptional
code [5], [8]. This neglection can impact the software system’s
robustness and might also be a sign of problems in the design
of the software system [9]–[11].

A design problem results from one or more design decisions
that negatively impact the system’s non-functional require-
ments (NFRs), which include robustness and maintainabil-
ity [12]–[14]. The most critical design problems often affect
how the system is modularized into components and how
these components interact with each other. To identify such
design problems, developers have to analyze several elements
(e.g., classes and packages), which is a laborious activity.
Thus, in this study, we focus on design problems related to
system modularity. An example is the design problem Concern
Overload that occurs when a component is responsible for
realizing multiple concerns [15]. This design problem can also
make it difficult for developers to know which concerns they
should focus on to create the proper exception-handling logic.
Furthermore, when neglected, these design problems can lead
the system to undesired consequences such as irrecoverability
from the faults, increasing the maintenance cost, and speeding
up software erosion [16]–[18].

Since these design problems can affect multiple NFRs,
they must be identified and removed from the systems as
soon as possible [19]. Multiple studies explored the use of
maintainability smells as symptoms of design problems [20]–
[22]. A recent study presented a catalog with patterns of main-
tainability smells that indicate multiple design problems [23].
However, more smells may be considered, since developers
may need more context regarding the class, component, or
system. Moreover, this can cause an incomplete identification
of the design problem. In addition, these studies do not
explore how exceptional code (i.e., code inside the catch
block) can be combined with maintainability smells to identify
design problems. Given the different natures of normal and
exceptional code, it is possible that they can complement each
other to identify design problems. Developers could benefit
from tools that, besides detecting multiple symptoms, also



combine them for revealing design problems [21]. Therefore,
in this study, we aim to understand how the poor changes
in exception handling can be used as symptoms of design
problems and how they can be combined with maintainability
smells to identify these problems.

For this study, we consider the changes related to robustness
as the changes performed within the catch blocks, since
the exceptional code is in this part of the implementations.
We analyzed over 160k class methods from 10 open-source
software systems. For our analysis, we collected (i) maintain-
ability smells based on insights from a related study [23], (ii)
robustness changes in methods, and (iii) robustness smells.
In the first analysis, we explored how robustness changes
could correlate with maintainability smells. Furthermore, we
looked for maintainability smells that were introduced through
robustness changes. Our goal was to identify how these two
factors were correlated. In a second analysis, we identified
whether robustness changes could have a negative impact on
classes with methods that underwent this kind of change.
Hence, we could understand how these changes impacted the
method’s degradation. Finally, we investigated which poor
robustness changes (signaled through robustness smells) could
be used with patterns of maintainability smells to identify
design problems.

We identified that a method with robustness changes would
also be affected by a Feature Envy, Dispersed Coupling, or
Long Method maintainability smells. By manually analyzing
the methods with robustness changes, we identified cases
where these changes introduced the maintainability smells,
especially the Feature Envy. We also identified that classes
with robustness changes had a higher density of smells when
compared to classes without such changes. Hence, these
robustness changes could indicate these classes’ degradation.
We also observed that the robustness smells catch of generic
exceptions and empty catch block tended to co-occur with the
patterns of maintainability smells that help in the identification
of design problems such as Concern Overload and Unwanted
Dependency.

Our results support the community in understanding how
poor robustness changes can complement the information
given by maintainability smells to identify design problems.
In practice, developers can use this information to be aware
that even minor modifications made to catch blocks can
potentially affect or reveal underlying design issues within the
system. Moreover, by identifying the robustness smells as a
new symptom of design problems, tools can be developed to
reinforce the presence of these problems.

II. BACKGROUND

This section describes the concepts for understanding the
relationship between poor robustness changes, and maintain-
ability code smells, so they can be used to identify design
problems.

A. Exception Handling

An exception is an unexpected event that occurs during the
execution of a program, interrupting its normal behavior [24],
[25]. Usually, exceptions manifest through errors. When an er-
ror happens, the method where it appears creates an exception
object including information, such as the program’s state and
details about the error. The exception object is then delivered to
the runtime system, completing the initial routine that throws
an exception [24].

Developers use exception-handling mechanisms to ensure
that the system will be in a consistent state, even after errors
that occur at runtime [25], assuring that the system will be ro-
bust. In Java, any code snippet likely to throw exceptions must
be placed inside a try-catch block. The try block defines
the normal code of a method. Respectively, each try is
followed by one or more catch blocks, which handle specific
exceptions thrown inside the associated try. The catch
block has the code responsible for handling the specific
exception types that can emerge from the enclosed instructions
in the try block. In addition, the catch block encompasses
the method’s exceptional code. These blocks can also
be followed by a finally block that always executes after
the try and the catch if an exception is raised.

B. Robustness Changes and Code Smells

In this study, we consider as robustness changes those per-
formed within the catch block, since the poor use of exception-
handling mechanisms can harm the software robustness [9]–
[11]. We consider the poor robustness changes as the changes
in the catch block that are affected by robustness smells. An
example of a robustness smell is the Empty Catch Block, which
occurs when a developer creates a catch statement but leaves
its content empty. This is a problem because the catch block
should be where the developer handles exceptions thrown by
the system, which is not occurring. Unfortunately, developers
tend to ignore these smells and only deal with them reactively
when they face errors [1]. Albeit ignored, robustness smells
may indicate the decay of the software [26]. Other indicators
of software degradation are the maintainability smells [27]–
[29], that can also signal design problems [21], [23], [30]–[32].
However, they are not always sufficient for this identification
task. Hence, since both maintainability and robustness smells
can indicate design problems, combining them could reinforce
its presence.

To understand this relationship between poor robustness
changes and maintainability smells, let us consider the fol-
lowing example illustrated by Figure 11. This figure displays
the HTTPHandler system, which implements an HTTP client.
Figure 1(a) shows the layered architectural style followed by
the architecture of the system we analyzed, which consists
of four layers: Interface, Cache, Connection, and
Control. According to the architectural style, each layer is
in charge of its responsibility, thus following the Separation
of Concerns (SoC) principle [33], [34].

1For simplicity, we adapted this example from one of the analyzed systems.
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Fig. 1. Partial View of the HTTPHandler System

Like other design decisions, one might expect that every
exception handled in each layer is directly related to the
responsibility (i.e., the concern) implemented in the layer.
However, this is not always the case. For example, Figure 1(b)
shows the ControlTimer class with three methods, where
flush() and drop() implement responsibilities from two
other layers: Cache and Connection, respectively. When
we look at the expire() method (illustrated in Listing 1),
we see a code snippet that shows a change was performed
in the class in which the developer tried to handle an error.
However, as observed in the Listing 1, it catches a generic
exception to handle the error, which is a bad practice since
it hides the error that the catch block should have captured
and handled. In addition, within the catch block, nothing is
handled, only logged with a generic message.

Listing 1
EXAMPLE OF METHOD CATCHING A GENERIC EXCEPTION

p u b l i c c l a s s C o n t r o l T i m e r {
( . . . )
p u b l i c void e x p i r e ( C o n t r o l c t ,

C o n n e c t i o n conn ){
t r y {

( . . . )
} c a t c h ( Throwable t ) {

l o g . debug ( c t . g e t S e r v i c e K e y ( )
+ ” and ” + conn . g e t U r l ( ) )

}
}

We hypothesize that this happened due to the several
concerns intermingled in the implementation of that class.
This method is also affected by the code smell Intensive
Coupling, which indicates that this class has a high coupling
with the other classes in the module. At the time, the developer
could not know which specific exception the block should
handle. As aforementioned, the class implements concerns
from other layers. Consequently, the many concerns caused
the developer to neglect proper exception handling in the
method. Furthermore, besides just logging the error instead of

handling it, the log method also calls multiple methods from
the other classes, introducing a Feature Envy and reinforcing
the Intensive Coupling smell that the method already had.
Additionally, these two maintainability smells are part of a
pattern that can strongly indicate the design problem Concern
Overload [23], [35]. The patterns considered in our study are
presented in Table I. Therefore, in this example, the poor
robustness change and the smell pattern together reinforced
the design problem’s presence. Moreover, this study explores
the potential of using these co-occurring factors to identify
design problems.

TABLE I
DESIGN PROBLEMS AND THEIR SMELL-PATTERNS

Design Problem Smells Pattern
Ambiguous Interface Long Method, Feature Envy, and Dispersed Coupling
Cyclic Dependency Intensive Coupling and Shotgun Surgery

Concern Overload
Divergent Change, Feature Envy,
God Class/Complex Class, Intensive Coupling,
Long Method, and Shotgun Surgery

Fat Interface Shotgun Surgery or Divergent Change, Dispersed Coupling,
and Feature Envy

Misplaced Concern God Class/Complex Class, Dispersed Coupling, Feature
Envy, and Long Method

Scattered Concern
Dispersed Coupling, Divergent Change, Feature Envy,
God Class/Complex Class, Intensive Coupling,
and Shotgun Surgery

Unwanted Dependency Feature Envy, Long Method, and Shotgun Surgery

III. RELATED WORK

Multiple studies have explored the relationship between
maintainability smells and design problems [15], [21], [23],
[31], [32], [35], [36]. Oliveira et al. [32] identified the criteria
that developers used to prioritize the classes that, with respect
to their degradation, were most critical in a system. The
authors found that developers tend to consider the quantity and
diversity of maintainability smells in a class as an important
factor in its prioritization. Thus, the developers should focus
their effort on these degraded classes. The limitation of these
studies regards using only the maintainability smells as the
symptom of design problems. Sousa et al. [21] developed
a theory on how developers identify design problems. They
identified the developers’ use of multiple symptoms, including
maintainability smells and violation of non-functional require-
ments (NFRs). Thus, our study explores the NFR robustness
(by considering the robustness changes) and its combination
with the symptom maintainability smell.

Studies have shown that maintainability smells can be
indicators of design problems [22], [30], [37], [38]. A pattern
of maintainability smells (i.e. groups of one or more types of
smells) can be a strong indicator of the presence of design
problems [23], [35]. For instance, when the maintainability
smells Feature Envy and Intensive Coupling occur together,
they indicate that the method, affected by these smells, is
more interested in data from others, calling many methods
from unrelated classes [28]. Hence, these smells can indicate
the presence of a Scattered Concern design problem [39].
However, these smells may not be sufficient to confirm the
presence of design problems [23]. Among the reasons, more



information regarding the context of the method and class
is needed, such as the system’s domain. Thus, in this study,
we expand the use of these smells with information on the
exceptional code, which can introduce more context (e.g.,
through the type of exception handled) about the method
and class analyzed. Best of our knowledge, the relationship
between robustness changes and code smells still needs to be
explored.

The use of exception-handling by developers is extensively
explored [26], [40]–[46]. Melo et al. qualitatively analyzed
the use of exception-handling guidelines by surveying 98
developers [40]. The authors identified that in 70% of the
developers’ responses, there was a guideline to be followed.
However, these guidelines tend to be implicit and undocu-
mented. Cacho et al. [46] presented a study with C# projects
where they identify the relationship between software systems
changes and their robustness. They analyzed 119 software
versions extracted from 16 systems from different domains.
They identified that C# developers often unconsciously traded
robustness for maintainability in various program categories.
Finally, it was identified that a high number of uncaught
exceptions were also introduced when the catch blocks were
changed. Other studies explored the faults and anti-patterns
commonly related to the exception-handling in the code [26],
[42]. In this study, we explore how poor changes in the
exceptional code can impact the maintainability smells of the
system.

IV. STUDY DESIGN

In summary, we analyzed commits from 10 open-source
software systems. We started by collecting maintainability
smells, robustness smells, and robustness changes in the com-
mits between selected pairs of releases from those systems.
We detail the remainder of the study design as follows. It is
also summarized in Figure 2.

A. Research Questions

Our goal is to understand how poor robustness changes can
be combined with maintainability smells as complementary
symptoms of design problems. With this goal in mind, we
defined three research questions.

RQ1: How often do robustness changes co-occur with
maintainability smells?

We hypothesize that robustness changes and maintainability
smells can be considered in combination (Section II-B) and
have the potential to reveal design problems. Therefore, we
performed a statistical analysis of the correlation between
robustness changes and maintainability smells using Fisher’s
exact test [47]. We started by dividing methods regarding
robustness changes they underwent between two releases and
the presence of maintainability smells in these methods.

Alongside understanding whether those robustness changes
and maintainability smells correlate, we also want to under-
stand if these changes could introduce the maintainability

smells. Thus, we selected the methods with robustness changes
and verified whether the maintainability smells were intro-
duced during those changes (see Section IV-D - Step 1).

RQ2: What impact can robustness changes have on
the degradation of classes?

Once we answer RQ1, we should have indications of
whether robustness changes and maintainability smells are
correlated and if these changes can introduce smells. After
knowing that, we aim to understand whether performing
robustness changes to methods can impact the degradation of
classes. For RQ2, similarly to previous work [21], [31], [32],
we considered degradation as the number of maintainability
smells a method has (a.k.a. density of smells). Developers
use this metric to prioritize classes with a high number of
different smells when looking for design problems [32] (see
Section IV-D - Step 2).

RQ3: How do robustness smells give evidence of
design problems?

After identifying if robustness changes can have a negative
impact on maintainability smells, we also want to investigate
further how we can use poor robustness changes as symptoms
of design problems. To answer RQ3, we analyze when robust-
ness smells co-occur with maintainability smells that are part
of patterns that indicate design problems (see Section II-B).
With this RQ, we aim to identify which robustness smells can
complement these patterns of maintainability smells, reinforc-
ing the presence of design problems (see Section IV-D - Step
3).

Consequently, by addressing all three research questions, we
will gain insights into how and which poor robustness changes
can be used with the patterns of maintainability smells to assist
developers in detecting design problems.

B. Defining Subject Software Systems and Releases

We firstly selected projects from a list of projects used in
related studies [22], [23], [36], [48]. Then, we filtered the
systems to be used in this study using the following criteria:

Open Source. We selected open-source software systems
to allow full replication of this work, since access to closed
software systems is usually very limited. Open-source software
systems often rely on version control systems (e.g., Git) to
track the evolution of their source code. This gives us access
to the complete history of changes (i.e., commits) to the source
code of a software system, allowing us to perform the multiple
analysis required to address our three research questions.

Java Language. We consider systems written in Java since
it provides an exception-handling mechanism designed to help
developers to build robust systems [49]. For instance, the use
of checked exceptions forces developers to write handlers for
certain errors. In addition, we selected projects from different
domains that are more inclined to follow robustness require-
ments (e.g., distributed computing, and big data processing).



Fig. 2. Workflow of our Study Design.

Moreover, Java has a wide availability of static analysis
tools and libraries that can automatically identify source code
problems [50]–[52].

Active Software Systems. To consider a software system
active we considered four criteria: (i) its Git repository has
more than 1,000 commits, (ii) should contain commits pushed
a month before our data collection period, (iii) should have
recent discussions on pull requests and issues, and (iv) should
have recent releases. These criteria ensure that the systems
still have a development activity and relevance to the devel-
opers participating. After following these criteria, we settled
on 10 software systems: APM Agent, Dubbo, Elasticsearch
Hadoop, Fresco, Netty, Spring Boot, Spring Security, Spring
Framework, RxJava, and OkHttp.

Given that the releasing strategy can differ across software
systems, we selected start and end releases that span at least
1,000 commits. Our goal is to avoid the bias of having
only a few robustness changes and thus being unable to
perform reliable conclusions. Therefore, we can detect subtle
patterns and correlations in the data that may not have been
apparent with fewer robustness changes. This led us to more
generalizable, accurate, and robust conclusions. In Table II,
we present the systems and the releases selected.

C. Collecting Artifacts Data

To answer our RQs, we collected robustness changes,
maintainability smells, and robustness smells from 10 target
systems. We first collected the maintainability smells using
Organic [52]. Organic is a static code analyzer that collects
software metrics [28] for maintainability smells detection. For
our first two RQs, we only consider method-level smells (e.g.,

TABLE II
DETAILS ON THE SOFTWARE SYSTEMS ANALYZED

Commits

Project Start Release End Release With
Any

Changes

With
Robustness

Changes

Methods

apm-agent-java v0.5.0 v1.28.0 1,025 484 9,949
dubbo dubbo-2.6.12 dubbo-3.0.0 1,382 1,069 26,613
elasticsearch-hadoop v1.3.0.M1 v8.0.0 1,120 503 3,894
fresco v1.0.0 v2.6.0 1,165 791 7,700
netty netty-4.1.31.Final netty-4.1.75.Final 995 694 19,067
okhttp parent-2.3.0 parent-3.14.0 586 455 5,933
RxJava v1.0.10 v3.1.0 1,169 799 28,004
spring-boot v2.7.6 v3.0.0 1,380 618 19,330
spring-framework v5.3.24 v6.0.0 1,119 794 38,429
spring-security 5.1.0.RELEASE 5.6.0.RELEASE 1,426 690 10,062

Commits with any changes: Number of commits with any kind of change
Commits with robustness changes: Number of commits with robustness
changes
Methods: Total number of methods between releases

Feature Envy, and Dispersed Coupling). We selected these
smells since they are part of the patterns that help identify
design problems (see Table I). When evaluating those design
problem patterns (i.e., RQ3), we also consider class-level
maintainability smells (e.g., God Class, and Complex Class).

To collect robustness changes, we developed a Python
script that calculates the difference between two commits and
identifies any change within the catch block of a method body.
We also filtered out the test code. Finally, we collected nine
robustness smells (e.g., empty catch block, and catch generic
exception), using PMD [50], which is a static code analyzer,
often used to find flaws in source code. Details about the
smells and the script developed can be found in our replication
package [53].



D. Data Analysis

In this section, we present the steps to the analyses executed
to answer our research questions as follows (see Figure 2).

Step 1: Correlating robustness changes and maintain-
ability smells: To answer RQ1, we first divided methods as
follows: (i) methods with at least one robustness change, (ii)
methods that changed but did not have any robustness change,
(iii) methods that were affected by at least one maintainability
smell, and (iv) methods that were unaffected by maintainabil-
ity smells. Considering this division, we defined the following
pair groups to be used in Fisher’s exact test [47].

• Smelly + Changed (SML + CH): Methods with main-
tainability smells and robustness changes

• Smelly + Not Changed (SML + NoCH): Methods with
maintainability smells without robustness changes

• Not Smelly + Changed (SML + CH): Methods without
maintainability smells and with robustness changes

• Not Smelly + Not Changed (NoSML + NoCH): Meth-
ods without maintainability smells and without robustness
changes

With this statistical test, we can define whether robustness
changes performed to a method are related to the presence
of maintainability smells in that same method. To understand
how these two factors could be correlated, we performed a
manual inspection analysis of randomly selected 206 methods
(equally distributed between the authors) with maintainability
smells and robustness changes. First, we selected the methods
in which robustness change and maintainability smell were
present. Then, for each analysis, the participants filled out a
form detailing how the robustness changes could be related
to the maintainability smells. All participants have experience
with exception handling and code smell detection and at least
a Master’s degree in Software Engineering. Whenever authors
had even a slight doubt about the validity of a case, they
took note of it, and another author was asked to confirm their
findings. This process allowed a comprehensive review of each
case, ensuring that mistakes were avoided and the verdicts
were reliable. Details about this manual inspection and the
protocol used can be found in our replication package [53].

Step 2: Verifying the introduction of maintainability
smells. In this step, we complemented the analysis of RQ1

with a qualitative analysis now looking at cases in which
maintainability smells were introduced through robustness
changes. For that purpose, we identified the methods by which
this event occurred and inspected them, looking for why the
robustness change introduced the smells. For this analysis,
we prioritized cases with a higher quantity of smells intro-
duced. Furthermore, we analyzed 30 methods, equally divided
between the software systems. To select these methods, we
divided them into quartiles, considering the number of smells
introduced in that commit. Furthermore, four authors analyzed
the methods presented in the 1st, 2nd and 3rd (together), and
4th quartiles.

Step 3: Assessing the impact of robustness changes on
the degradation of methods: To answer RQ2, we evaluate

TABLE III
THE RELATION OF MAINTAINABILITY SMELL (S) AND

ROBUSTNESS CHANGES (C) - (P < 0, 05)

Software System Odds
Ratio

SML +
CH

SML +
NoCH

NoSML +
CH

NoSML +
NoCH

apm-agent-java 4.755 50 941 99 8,859
dubbo 6.995 219 1,956 385 24,053
elasticsearch-hadoop 2.377 33 139 338 3,384
fresco 5.243 25 35 916 6,724
netty 6.902 45 63 1,778 17,181
okhttp 3.351 32 75 658 5,168
RxJava 5.938 48 105 1,991 25,860
spring-boot 2.192 10 62 1,320 17,938
spring-framework 4.504 31 73 3,302 35,023
spring-security 2.458 50 234 782 8,996

Odds Ratio: Odds ratio identified through the Fisher test
SML + CH: # of methods with maint. smells and robust. changes
SML + NoCH: # of methods with maint. smells and without robust. changes
NoSML + CH: # of methods without maint. smells and with robust. changes
NoSML + NoCH: # of methods without maint. smells and robust. changes

whether the number of maintainability smells in a class with
methods that underwent robustness changes is significantly
higher than the number of smells in classes that do not
have methods with this kind of change. First, we compared
the number of smells in both groups of classes. Next, we
considered the total number of maintainability smells a class
has in the end release, considering the smells on the method-
level. Finally, to analyze the statistical significance of our
results, we applied the Mann-Whitney test [54].

Step 4: Identifying robustness smells as a symptom of
design problems. To answer RQ3, we analyzed the methods
that underwent robustness changes between the pair of releases
defined (see Section IV-B), resulting in 4,758 methods. First,
we collected the robustness smells for each method and
verified whether the robustness smells co-occurred with the
patterns for identifying design problems. For each smell,
we verified how many times a pattern co-occurred with the
robustness change. Finally, we analyzed 80 cases in which this
event occurred to understand whether this robustness change
and the pattern could be related to a possible design problem.

V. ANALYSIS AND RESULTS

This section presents and discusses the results to answer
our research questions. First, we explored the correlation
between robustness changes and maintainability smells. Next,
we explored the density of smells compared to classes with
robustness changes and without this kind of change. Finally,
we explored the type of robustness changes that lead to the
presence of design problems.

A. How often do robustness changes co-occur with maintain-
ability smells?

To answer RQ1, we analyzed if there is a correlation
between robustness changes and maintainability smells. For
that purpose, we first relied on Fisher’s exact test [47] (see
Section IV-A). Table III provides an overview of this analysis.

Chances of methods with robustness changes being
affected by maintainability smells. Considering the commits



between the two releases, we computed a correlation for the
methods’ robustness changes and maintainability smells. In
our analysis, all systems had p < 0.05, meaning that there is
an association between the occurrence of robustness change
and maintainability smell in methods. The odds ratio assumes
values from 0 to infinity. When the OR is greater than 1, it
indicates that methods that underwent robustness changes will
likely be affected by maintainability smells.

In this test, we used the robustness change as a predictor
and maintainability smell as the outcome. For instance, for
the system Dubbo, the Fisher test computed an odds ratio of
6.995. This means that the odds of a maintainability smell
occurring are 6.995 higher in cases where the robustness
change occurs than in cases where this change does not
affect the method. Thus, this indicates a strong correlation
between robustness change and maintainability smells. In this
example, 26,613 methods were changed between the releases,
thus considered in the analysis. From these methods, 604
had robustness changes (219 with maintainability smells and
385 without them). Also, we discuss the cases in systems
with the highest odds ratio. For instance, in Table III, the
lowest odds ratio is 2.192 in the spring-boot system; hence
methods with robustness changes are at least twice as likely to
have maintainability smells compared to methods without such
changes. Therefore, developers should consider these changes
when introducing or changing exceptional code.

Finding 1: When robustness changes are performed,
developers should be aware of the maintainability smells
introduced or already present in the method.

To better understand which maintainability smells correlated
with the robustness changes, we did an analysis specifically for
each smell. Table IV presents the results for this analysis. Each
column represents a maintainability smell. Each cell represents
the odds ratio for the specific smell. When we did not reach
statistically relevant results, we filled the cell with ‘NR’ (Not
statistically Relevant).

We can highlight three smells: Feature Envy, Dispersed
Coupling, and Long Method. The results of these three smells
were statistically significant in all software systems, except for
spring-boot. Dispersed Coupling had an odds ratio higher than
five in eight systems, while Feature Envy and Long Method
had in six and eight systems, respectively. That means a strong
correlation between the robustness change and the presence of
these smells on methods. The smell Shotgun Surgery had an
odds ratio of 21.686 on RxJava. However, the results for this
smell were relevant only for five systems.

Finding 2: Methods that underwent robustness changes
mostly co-occur with the maintainability smells Dis-
persed Coupling, Feature Envy, and Long Method.

We decided to manually evaluate cases involving the three
maintainability smells mentioned with the highest odds ratio.
For that, we selected a sample of 206 methods. To select

them, we chose the commit in which the class had methods
affected by the maintainability smells and had the robustness
change. On a manual analysis, we identified that in at least 74
(35.91%), the maintainability smell was directly related to the
robustness change, meaning that either the robustness change
introduced the smell or worsened the smell already present in
the method. More details about this validation can be found
in our replication package [53]. Besides these direct cases, we
observed that this relation could also be indirect.

Indirect relation between robustness changes and main-
tainability smells. One example is case in the method
drainLoop from RxJava [55]. We identified that the Feature
Envy and Message Chain smells were related to the oper-
ation performed, which was a parsing that resulted in new
exceptions being raised. Therefore, there is an indirect relation
between the smells and the exceptional change. The indirect
relation can also be related to Long Methods. In this scenario,
it is natural that the excess of code statements will be more
complex, leading to multiple catch implementations of generic
catch blocks or even empty catch blocks.

Developers can use the logging mechanism as a source of
information for minor exception-handling improvements.
Changes in the logging regarding the errors handled were
also constant in our analysis. We observed that 37 (from 206)
cases were related to logging in the catch block. At first sight,
this may be seen as a bad practice, as apparently nothing is
handled. However, the log messages can serve as documenta-
tion for the developers, since they can provide information
to the developers that will maintain this exceptional code.
Furthermore, when a developer inserts a log message with
proper information regarding the exception, it can indicate
that he intends to improve the code in the future. However, in
our analysis, we observed that the inclusion of Feature Envy
was mainly related to changes in the log messages, as we
described above on a method from dubbo. Hence, developers
need to be careful when adding these messages since they can
add new maintainability smells. For instance, the developer
should give more context in the log message, which can be
reinforced using more specific exceptions rather than generic
ones. In addition, the developer needs to be sure about the log
level for the messages, which would avoid smells such as the
Feature Envy.

Maintainability smells can be included during robust-
ness changes. We identified that from the 4,758 methods
with robustness changes, 774 (16.26%) co-occurred with the
introduction of maintainability smells. Therefore, we analyzed
the cases in which this happened. We focused on cases with
the introduction of Feature Envy, Dispersed Coupling, and
Long Method, which had statistically relevant results in 9
out of 10 systems (see Table IV). On dubbo, we observed
a case in which the developer added log messages to the
catch block. However, these messages heavily relied on calls
to methods from other classes, adding a Feature Envy and a
Dispersed Coupling. We observed a similar case on RxJava,
but in which the catch block introduced the smell Dispersed
Coupling. In addition, the block called multiple classes to close



TABLE IV
THE RELATION OF SPECIFIC SMELLS (S) AND ROBUSTNESS CHANGES (C). (P < 0, 05)

Odds Ratio
Software System Brain

Method
Dispersed
Coupling

Feature
Envy

Intensive
Coupling

Long
Method

Message
Chain

Long Parameter
List

Shotgun
Surgery

spring-security NR 11.002 2.477 NR 6.291 NR NR 11.206
apm-agent-java NR 6.952 8.153 9.058 13.431 2.482 NR NR
dubbo 10.330 14.171 8.198 10.191 9.305 3.168 1.936 10.330
elasticsearch-hadoop NR 7.214 2.968 4.607 3.971 3.002 NR 8.032
fresco NR 9.299 8.878 NR 7.205 NR 2.780 NR
netty NR 13.033 6.126 9.930 14.293 NR 2.461 NR
okhttp NR 3.862 5.933 9.743 9.059 2.929 NR 9.011
RxJava NR 10.049 9.820 NR 11.272 NR 3.387 21.686
spring-boot NR NR NR NR NR NR 3.682 NR
spring-framework NR 15.411 4.517 NR 5.447 3.425 4.124 NR

NR: Not statistically relevant

the resources used. On okhttp, we identified a case of bad
practice on exception handling that led to the introduction of
a Long Method. In this class, the developer added multiple
catch blocks for different exceptions. However, the handling
code was the same in every case, which led to duplicated
code, making the method unnecessarily long. In that scenario,
the developer should use the same code on the same block,
since the Java language allows the developer to do that. These
changes also can impact the robustness of the software system
in the future, making it difficult for the developer to understand
the source of that problem.

Finding 3: Robustness changes can introduce smells such
as Feature Envy and Dispersed Coupling on the methods,
which can negatively impact their maintainability.

We observed that these cases in which the robustness
changes come along with the introduction of maintainability
smells happened when the method was introduced in the
commit. Therefore, both the change and the smell are inserted
simultaneously. Still, the robustness change can indicate the
presence of these smells in the normal code. For instance, let
us consider the method onBeforeExecute from apm-agen-
java [56]. This method is part of the ElasticsearchRestCli-
entInstrumentation class, which provides the instrumentation
for the Elasticsearch Java Rest Client. The method is called
before a request is executed using this client. In this case,
the catch block in the method was empty, and the developer
left a comment warning that nothing should be handled there.
Through this message, it can be the case that the exception
is not in the correct class. This can be directly related to the
presence of the Feature Envy, indicated through the multiple
calls to data from the Span class. This excessive calling also
introduced the smells Intensive Coupling, Long Method, and
Message Chain. Therefore, even though it was a simple change
in the catch block, it signaled the other maintainability smells.

Finding 4: Even small changes in the exceptional code
(e.g., a comment in an empty catch block) can be an
indicator of maintainability smells such as Feature Envy
and Intensive Coupling.

In summary, in our first RQ, we observed the maintainability
smells that commonly co-occur or are introduced with robust-
ness changes performed in the code. Hence, developers should
be aware of these smells when performing this kind of change
on a method, even when small. This way, it is recommended
that the developers plan ahead the changes that will be
performed. Furthermore, these changes should be considered
even in the early stages of software development, when the
decisions regarding exception handling should be defined ap-
propriately. Developers could also benefit from using tools that
could warn them about the possible maintainability smells that
could be introduced with that robustness change. Alternatively,
even warning them about possible smells already present in
that method, giving the change performed, is informative.

B. What impact can robustness changes have on the degrada-
tion of classes?

To answer RQ2, we computed the density of maintainability
smells in methods with and without robustness changes (see
Section IV-D. Figure 3 presents box plots representing the den-
sity of smells per method group and software system. Inside
each one, we have white dots representing the mean density. In
parentheses, we show the systems in which p−value < 0.05,
meaning that the results were statistically significant for the
Mann-Whitney statistical test applied. With this test, we want
to confirm whether the density of maintainability smells in
classes with methods that underwent robustness changes is
greater than the density of smells in classes without these
methods.

Density of maintainability smells in classes with and
without methods that underwent robustness changes.
Looking at the box plots, we can observe that the density
median was higher in six systems, while the median was
the same in the other four. In addition, the mean density
of smells is higher in seven systems. Thus, we can observe
through the mean and median that classes with methods that
underwent robustness changes tend to have a higher density
of maintainability smells than classes without these methods.
More details about the statistical values are available in our
replication package [53].
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Finding 5: Classes with methods that underwent robust-
ness changes tend to have a higher density of maintain-
ability smells compared to classes without methods with
this kind of change.

Robustness change can worsen the already existing
maintainability smells. In our analysis, we observed a typical
scenario for all systems. The introduced catch block does not
originate the smells but, in some cases, contributes to their
worsening (e.g., making a method more coupled than earlier).
It suggests that the robustness changes occur in methods with
a high density of smells. For instance, we identified that
catch blocks contribute to amplifying the smelly nature of
Long Methods, Message Chains, and Dispersed Couplings.
Therefore, the catch block contributes to expanding the smelly
structure since the same practices of the smelling code are –
to a minor or a large extent – also replicated for the exception
handling code.

Well-written robustness changes may reduce maintain-
ability smells. We observed that methods with a high number
of smells had catch blocks with poor or no exception handling
at all. For instance, on elasticsearch, we observed that the
excess of maintainability smells on the methods could be
related to the lack of proper error handling. Multiple instances
of Feature Envy were found in methods without exception
handling. These methods exhibited this code smell more
frequently than the methods with catch blocks in the same
class. We also observed similar cases on Fresco and dubbo.
Since we are considering the system’s version on the last
release (e.g., the last version of the class), we can conjecture
that the methods in which the developers did not handle
errors degraded more when compared with the classes that
had proper error handling.

Finding 6: Robustness changes can worsen maintain-
ability smells such as Long Methods, Message Chains,
Dispersed Couplings, and Feature Envy, hampering the
modularity of the system.

To sum up, with this RQ, we observed that the robust-

ness changes could have a negative impact on classes with
methods that underwent such changes. This impact is signaled
through the high density of maintainability smells. Developers
commonly use this density to prioritize classes likely to have
design problems [21], [32]. Furthermore, the introduction and
worsening of smells were mainly related to the maintainability
smells that signal design problems related to the system’s mod-
ularity (Table I). Hence, we highlight that when performing
robustness changes, developers should be aware of the smells
introduced or worsened since it may indicate deeper problems
in the system. In addition, tools could use these metrics (i.e.,
presence of robustness change and high density of specific
smells) to signal possible design problems in the system.

C. How do robustness smells give evidence of design prob-
lems?

To answer RQ3, we analyzed if robustness smells co-
occurring with patterns of maintainability smells could help in
the identification of design problems. Thus, we first identified
when the robustness smells appeared in methods together with
the maintainability smells that indicate design problems (see
Table I). Table V presents the results. Each cell represents
cases where the robustness smell co-occurs with the main-
tainability smells, forming a pattern. We can observe a high
number of cases where catch generic exception (1,160 cases)
and empty catch block (347 cases) co-occurred with the main-
tainability smells forming the patterns. We manually analyzed
the patterns that happened the most with the robustness smells.
They are highlighted in gray.

Generic and empty catches can indicate the presence
of maintainability smell patterns. The robustness smell
was not directly related to a design problem from the cases
we analyzed. However, they could signal that maintainability
smells were affecting the method. Let us consider the case
of the method getAsync from fresco [57]. This method has
nested try/catch blocks due to excess of verification performed.
There are also catch generic exceptions that only return Null
instead of handling the exceptions. We can hypothesize that
this happened for two reasons: (i) the method was fulfilled with
multiple concerns; hence the developer did not know which



TABLE V
CASES IN WHICH ROBUSTNESS SMELLS CO-OCCUR WITH PATTERN OF MAINTAINABILITY SMELLS

Robustness Smell

Pattern Catch Generic
Exception

Method
Throws

Exception

Empty
Catch
Block

Catch
NPE

Rethrows
Exception

Throw New
Instance Of

Same Exception

Throw
Exception
In Finally

Exception
As Flow
Control

Throw
NPE

Concern Overload 212 1 54 2 7 0 3 7 3
Cyclic Dependency 74 5 6 0 6 0 3 7 1
Fat Interface 171 2 6 0 1 0 0 1 1
Misplaced Concern 394 5 199 3 8 1 0 1 7
Scattered Concern 35 0 1 0 0 0 0 1 0
Unwanted Dependency 274 2 81 2 7 0 0 1 4
Total 1160 15 347 7 29 1 6 18 16

exception should be handled, or (ii) the exception was handled
on the wrong class. This can hint that this method could not
be in the correct class. When we look at the maintainability
smells, this method has a Feature Envy since it calls multiple
methods from other classes, which also causes a Dispersed
Coupling. Since the method uses data from other classes, it
also causes a Long Method. Together, these smells can indicate
the design problems Misplaced Concern or Scattered Concern.
Both design problems suggest that this method should be
moved to a more appropriate class.

Developers can be induced to introduce generic catches.
Let us consider a case analyzed on dubbo [58] in the method
getProxy, which was affected by a catch generic exception
(i.e., a Throwable). This is a bad practice since the exceptions
should be adequately handled depending on their type. As the
scope of Throwable is too broad, it may hide runtime issues
that should be better handled. However, the developer may
be induced to introduce these bad practices. This may occur
on methods affected by a Long Method, combined with the
fact that the developer does not know the software system’s
design well. Thus, he/she uses this generic handler to catch
any exception.

Furthermore, this harmful practice can be the source of
new maintainability smells, as we observed in this method,
which was affected by Dispersed Coupling, Feature Envy,
Message Chain and was part of a Complex Class. This happens
because the developer tries to implement multiple concerns
in this method. To do that, he/she may need to call multiple
methods from other classes, hampering the modularity of the
software system. In addition, the long methods also tend to
have more dependencies on external elements. Thus, the class
also has a higher chance of having exceptions handling errors
from multiple contexts, which can explain why developers
use generic catches. In this example, both maintainability and
robustness smells could indicate the presence of a Misplaced
Concern or Scattered Concern.

Generic catches indicating unwanted dependencies. We
observed that developers tended to determine that all ex-
ceptions without a specific type would only be logged and
lead to the system crash afterward. This happened when they
were handling generic exceptions or in cases with an empty
catch block, where only a comment was left in the handler.
These smells could appear due to some projects’ status as

frameworks (e.g., spring-framework and RxJava), meaning that
the hot spot classes (i.e., those that the framework’s users will
directly use) might have a different form of exception handling
than the rest of the project. The design problem Unwanted
Dependency seemed to appear for the same reason: the role
of the classes as hot spots. Upon analysis, we noticed that
these classes served as “import hubs”. Each class imported
several other package classes, allowing the user to have all the
package’s functionality by importing a single class. However,
this bad practice leads to potentially unwanted dependencies
among the classes. In addition, this caused the presence of
the maintainability smells Feature Envy, Shotgun Surgery, and
Long Method.

Finding 7: The robustness smells empty catch block,
and catch generic exception can indicate the presence
of maintainability smells mainly related to the design
problems Concern Overload, Misplaced Concern, and
Unwanted Dependency.

In conclusion, when the code is too complex and affected by
code smells on both normal and exceptional code, we observed
that developers tend to modify only the normal code (the one
inside the try block). This can happen since the exceptional
code tends to be more complex due to the global nature of
exceptions. This complexity is related to how the exceptions
can traffic between system modules. Thus, when changing
the exceptional code, the developer needs to be careful about
how this change will impact the modularity of the software
system. In addition to the complexity, the IDEs tend to provide
refactoring suggestions only for the normal code. Due to its
different nature, it would be ideal to have specific refactor-
ings for the exceptional code. For instance, in some cases,
the IDEs constrain the implementation of exception-handling
mechanisms. The IDE does not let the developer choose which
class should handle the exception. Therefore, the developer
must be free to choose how to properly handle the exception
before applying the refactoring. Hence, the refactoring needs
to be manually performed, which can discourage the developer
from implementing the improvement change.

We hypothesize that this behavior was also due to the need
for proper refactoring recommendations by IDEs. These tools
provide better refactoring options only for the normal code.



They do not consider the nuances the exception handling code
can have, such as which class could or should handle the
exceptions. Thus, these changes co-occurring with the code
smells can indicate to developers that robustness refactoring
should be done at that time. When neglected, these robustness
changes can also increase the degradation of the method. This
can complicate the code in the future, making it more complex
and discouraging developers from maintaining the code.

As observed, the robustness smells can indicate the pres-
ence of patterns of maintainability smells that signal design
problems related to the system modularity. These design prob-
lems are challenging to identify since they can be scattered
through multiple software system components. By analyzing
maintainability smells, developers may not be able to identify a
design problem accurately. However, developers can find more
reliable results when using both maintainability and robustness
smells. Thus, the indicator given by the co-occurrence of
robustness smells and these patterns can help the developer to
identify this design problem and refactor the code to remove
or reduce this problem. Hence, the developer will save time
and effort on this identification.

VI. THREATS TO VALIDITY

Our analyses were performed on a set of 10 software
systems, which could be a threat. However, our selection was
based on meticulously defined criteria to find software systems
(see Section IV-B) relevant to our research questions. In
addition, our criteria also focused on reproducibility, allowing
other researchers to replicate our steps. Therefore, our study
can be the starting point for other researchers to explore
the types of relationships explored in this paper with other
software systems with other purposes and domains.

Another threat is the detection strategies (and their specific
thresholds) for code smells. To mitigate this threat, we selected
a tool (Organic) that uses a set of strategies and thresholds
commonly used by the software engineering community [28].
Moreover, this tool has been successfully used in multiple
studies about software design (e.g., [20], [21], [23], [59]).
Finally, we mitigated this threat by performing a manual in-
spection analysis with experienced experts. For each analysis,
the participants filled out a form detailing how the robustness
changes could be related to the maintainability smells.

The selection of releases can also be another threat. How-
ever, we carefully selected these releases based on the number
of commits that the two releases had between them. More
specifically, we selected a pair of releases spanning at least
1000 commits. That allowed us to cover a significant part of
the history of software systems. Furthermore, there is no bias
in the selection of releases, since this metric of commits was
used indistinctly from the software system.

The use of exception handlers affects the size and com-
plexity of methods, potentially threatening validity. Therefore,
we validated our dataset to ensure we were not performing

unfair comparisons between methods with and without ex-
ception handlers. Hence, we observed that the presence of
getters/setters was balanced between these two subsets per
software system, accounting for ∼11% of getters and setters
composing our complete dataset.

VII. CONCLUSION

We explore how the combination of poor robustness changes
and maintainability smells indicates design problems. For that
purpose, we analyzed over 160k methods from 10 open-
source systems. We identified that the robustness changes
could introduce or worsen maintainability smells such as
Dispersed Coupling, Feature Envy, and Long Method. We also
observed that classes with methods that underwent robustness
changes tend to have a higher density of maintainability
smells compared to classes without these methods. Finally,
we observed that the robustness smells empty catch block and
catch generic exception could be used with the maintainability
smells to help the identification of design problems such as
Concern Overload, and Unwanted Dependency.

Understanding the relationship between robustness changes
and code smells can help developers identify design problems’
presence. Such problems are harmful to the software and
hard to identify. Using the knowledge about this relationship
can be the first step toward their identification. Additionally,
these problems can be the target of refactoring operations,
thus improving the maintainability and system robustness. In
practice, developers can now be aware that even small changes
in the catch blocks can impact or indicate possible design
problems in the system. Moreover, based on our findings, tools
can be developed to assist the maintainability and evolution
of systems.

In future work, we plan to explore other symptoms of design
problems (e.g., smells related to other NFRs). In addition,
we will investigate the evolution of methods that underwent
robustness changes. Thus, we will be able to understand how
poor robustness changes can impact the quality of the method
during the software evolution. Finally, we plan to explore cases
where only the exception part has changed and observe its
impact on the normal code unchanged.
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